publications

2025

  1. SaTML
    SoK: Membership Inference Attacks on LLMs are Rushing Nowhere (and How to Fix It)
    Matthieu Meeus, Igor Shilov, Shubham Jain, Manuel Faysse, Marek Rei, and Yves-Alexandre Montjoye
    In , 2025

2024

  1. arXiv
    Watermarking Training Data of Music Generation Models
    Pascal Epple, Igor Shilov, Bozhidar Stevanoski, and Yves-Alexandre Montjoye
    arXiv preprint 2412.08549, 2024
  2. arXiv
    Free Record-Level Privacy Risk Evaluation Through Artifact-Based Methods
    Joseph Pollock*Igor Shilov*, Euodia Dodd, and Yves-Alexandre Montjoye
    arXiv preprint 2411.05743, 2024
  3. arXiv
    Certification for Differentially Private Prediction in Gradient-Based Training
    Matthew Wicker, Philip Sosnin, Igor Shilov, Adrianna Janik, Mark N. Müller, Yves-Alexandre Montjoye, and 2 more authors
    arXiv preprint 2406.13433, 2024
  4. arXiv
    Mosaic Memory: Fuzzy Duplication in Copyright Traps for Large Language Models
    Igor Shilov*, Matthieu Meeus*, and Yves-Alexandre Montjoye
    arXiv preprint 2405.15523, 2024
  5. ICML
    Copyright Traps for Large Language Models
    Matthieu Meeus*Igor Shilov*, Manuel Faysse, and Yves-Alexandre Montjoye
    In Forty-first International Conference on Machine Learning, 2024

    Press coverage in MIT Technology Review and Nature News.

2022

  1. arXiv
    Defending against Reconstruction Attacks with Rényi Differential Privacy
    Pierre Stock, Igor Shilov, Ilya Mironov, and Alexandre Sablayrolles
    arXiv preprint 2202.07623, 2022

2021

  1. NeurIPS
    Antipodes of label differential privacy: PATE and ALIBI
    Mani Malek Esmaeili, Ilya Mironov, Karthik Prasad, Igor Shilov, and Florian Tramer
    In Advances in Neural Information Processing Systems, 2021
  2. NeurIPS Workshop
    Opacus: User-Friendly Differential Privacy Library in PyTorch
    Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani Malek, and 6 more authors
    In NeurIPS Workshop on Privacy in Machine Learning, 2021